Common Core State Standards High School: Algebra #### **Math Practices** MP.1 Make sense of problems and persevere in solving them. **Lesson 1 Numbers & Equations** Investigations 1.1, 1.2, 1.3 Projects 1.1, 1.2 | Problems 1.1, 1.2 **Lesson 2 Linear Relationships** Investgation 2.1 Projects 2.1, 2.2 | Problems 2.1, 2.2 **Lesson 3 Relations and Functions** Investigation 3.1 Project 3.2 | Problems 3.1, 3.2 **Lesson 4 Linear Functions** Investigation 4.1 Projects 4.1, 4.2 | Problems 4.1, 4.2 **Lesson 5 Systems of Linear Equations** Investigation 5.1 Project 5.1, 5.2 | Problems 5.1, 5.2 **Lesson 6 Graphing Quadratic Functions** Investigation 6.1 Project 6.1, 6.2 | Problem 6.1, 6.2 **Lesson 7 Solving Quadratic Functions** Project 7.1, 7.2 | Problem 7.1, 7.2 **Lesson 8 Exponential Functions and Data Analysis** Project 8.1, 8.2 | Problem 8.1, 8.2 MP.2 Reason abstractly and quantitatively. **Lesson 1 Numbers & Equations** Investigations 1.1, 1.2, 1.3 Projects 1.1, 1.2 | Problems 1.1, 1.2 **Lesson 2 Linear Relationships** Investgation 2.1 **Lesson 3 Relations and Functions** Investigation 3.1 Project 3.2 | Problem 3.2 **Lesson 4 Linear Functions** Investigation 4.1 Projects 4.1, 4.2 | Problems 4.1, 4.2 **Lesson 5 Systems of Linear Equations** Investigation 5.1 Project 5.1, 5.2 | Problems 5.1, 5.2 **Lesson 6 Graphing Quadratic Functions** Project 6.1, 6.2 | Problem 6.1, 6.2 **Lesson 7 Solving Quadratic Functions** Project 7.1, 7.2 | Problem 7.1, 7.2 **Lesson 8 Exponential Functions and Data Analysis** Project 8.1, 8.2 | Problem 8.1, 8.2 MP.3 Construct viable arguments and critique the reasoning of others. **Lesson 3 Relations and Functions** Project 3.2 **Lesson 4 Linear Functions** Project 4.1 **Lesson 7 Solving Quadratic Functions** Problem 7.1 | MP.4 Model with mathematics. | Lesson 1 Numbers & Equations Investigations 1.1, 1.2, 1.3 Projects 1.1, 1.2 Problems 1.1, 1.2 Lesson 2 Linear Relationships Investigation 2.1 Projects 2.1, 2.2, 2.3 Problems 2.1, 2.2 Lesson 3 Relations and Functions Investigation 3.1 Projects 3.1, 3.2 Problems 3.1, 3.2 Lesson 4 Linear Functions Projects 4.1, 4.2 Problems 4.1, 4.2 | Lesson 5 Systems of Linear Equations Investigation 5.1 Projects 5.1, 5.2 Problems 5.1, 5.2 Lesson 6 Graphing Quadratic Functions Investigation 6.1 Projects 6.1, 6.2 Problems 6.1, 6.2 Lesson 7 Solving Quadratic Functions Projects 7.1, 7.2 Problems 7.1, 7.2 Lesson 8 Exponential Functions and Data Analysis Project 8.1 Problems 8.1, 8.2 | |---|--|---| | MP.5 Use appropriate tools strategically. | Lesson 2 Linear Relationships Projects 2.1, 2.3 Problem 2.2 Lesson 3 Relations and Functions Investigation 3.1 Project 3.1 Lesson 4 Linear Functions Project 4.2 Problems 4.1, 4.2 | Lesson 5 Systems of Linear Equations Problems 5.1, 5.2 Lesson 6 Graphing Quadratic Functions Investigation 6.1 Projects 6.1, 6.2 Problems 6.1, 6.2 Lesson 7 Solving Quadratic Functions Projects 7.1, 7.2 Problems 7.1, 7.2 Lesson 8 Exponential Functions and Data Analysis Projects 8.1, 8.2 Problems 8.1, 8.2 | | MP.6 Attend to precision. | Lesson 1 Numbers & Equations Investigations 1.1, 1.2, 1.3 Projects 1.1, 1.2 Problems 1.1, 1.2 Lesson 2 Linear Relationships Investgation 2.1 Projects 2.1, 2.2, 2.3 Problems 2.1, 2.2 Lesson 3 Relations and Functions | Lesson 5 Systems of Linear Equations Investigation 5.1 Projects 5.1, 5.2 Problems 5.1, 5.2 Lesson 6 Graphing Quadratic Functions Investigation 6.1 Projects 6.1, 6.2 Problems 6.1, 6.2 Lesson 7 Solving Quadratic Functions | Investigation 3.1 Projects 3.1, 3.2 | Problems 3.1, 3.2 Projects 4.1, 4.2 | Problems 4.1, 4.2 **Lesson 4 Linear Functions** Projects 7.1, 7.2 | Problems 7.1, 7.2 **Lesson 8 Exponential Functions and** Project 8.1 | Problems 8.1, 8.2 **Data Analysis** | MP.7 Look for and make use of structure. | Lesson 1 Numbers & Equations Investigations 1.1, 1.2 Lesson 2 Linear Relationships Project 2.3 Lesson 3 Relations and Functions Projects 3.1, 3.2 Problems 3.1, 3.2 Lesson 4 Linear Functions Projects 4.1, 4.2 | Lesson 5 Systems of Linear Equations Investigation 5.1 Projects 5.1, 5.2 Problems 5.1, 5.2 Lesson 6 Graphing Quadratic Functions Investigation 6.1 Projects 6.1, 6.2 Problems 6.1, 6.2 Lesson 7 Solving Quadratic Functions Projects 7.1, 7.2 Problems 7.1, 7.2 Lesson 8 Exponential Functions and Data Analysis Project 8.1 Problems 8.1, 8.2 | |---|---|---| | MP.8 Look for and express regularity in repeated reasoning. | | Lesson 5 Systems of Linear Equations Investigation 5.1 Projects 5.1, 5.2 Problems 5.1, 5.2 Lesson 6 Graphing Quadratic Functions Projects 6.1, 6.2 Problems 6.1, 6.2 Lesson 7 Solving Quadratic Functions Projects 7.1, 7.2 Problems 7.1, 7.2 Lesson 8 Exponential Functions and Data Analysis Project 8.1 Problems 8.1, 8.2 | ## **Number and Quantity** | Hamber and Guarrity | | |---|--| | N.Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. | Problem 1.1
Problem 1.2
Investigation 2.1
Project 2.1
Project 2.3 | | N.Q.2 Define appropriate quantities for the purpose of descriptive modeling. | Investigation 1.3 | | N.Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. | Investigation 1.3
Project 2.1
Project 2.2 | | Algebra | | | A.SSE.1 Interpret expressions that represent a quantity in terms of its context. | Investigation 1.1
Investigation 1.2
Project 1.1
Project 1.2
Problem 1.1
Problem 1.2
Problem 7.1
Problem 8.1 | | A.SSE.1.a Interpret parts of an expression, such as terms, factors, and coefficients. | Project 1.1
Project 1.2
Problem 1.1
Problem 1.2
Problem 7.1
Problem 8.1 | | A.SSE.1.b Interpret complicated expressions by viewing one or more of their parts as a single entity. For example, interpret P(1+r)n as the product of P and a factor not depending on P. | Project 2.1
Project 2.2
Project 2.3
Problem 2.1
Problem 2.2
Problem 8.1 | |---|--| | A.SSE.2 Use the structure of an expression to identify ways to rewrite it. For example, see x4 - y4 as (x2)2 - (y2)2, thus recognizing it as a difference of squares that can be factored as (x2 - y2)(x2 + y2). | Project 7.1 | | A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* | Project 7.1
Project 7.2 | | A.SSE.3.a Factor a quadratic expression to reveal the zeros of the function it defines. | Investigation 7.1
Project 7.1
Project 7.2 | | A.SSE.3.b Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines. | Project 7.2 | | A.SSE.3.c Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%. | Problem 8.1 | | A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials. | Problem 7.2 | | A.CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. | Investigation 1.2 Project 1.2 Problem 1.1 Problem 1.2 Project 2.1 Project 2.2 Project 2.3 Problem 2.2 Project 7.1 Project 7.2 Problem 7.1 Problem 7.2 | |--|---| | A.CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales. | Project 4.2 Problem 4.2 Problem 5.1 Project 5.1 Project 5.2 Problem 5.1 Problem 5.2 Investigation 6.1 Project 6.1 Project 6.2 Problem 6.1 Problem 6.1 | | A.CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context. For example, represent inequalities describing nutritional and cost constraints on combinations of different foods. | Project 1.2
Problem 1.1
Problem 1.2
Project 2.2 | | A.CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm's law V = IR to highlight resistance R. | Investigation 2.1
Project 2.3 | | A.REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. | Investigation 1.3
Project 1.1
Problem 1.1
Problem 1.2 | |--|---| | A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters. | Investigation 2.1 Project 2.1 Project 2.2 Project 2.3 Problem 2.1 Problem 2.2 | | A.REI.4 Solve quadratic equations in one variable. | Investigation 7.1
Project 7.1
Project 7.2
Problem 7.1
Problem 7.2 | | A.REI.4.a Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)2 = q$ that has the same solutions. Derive the quadratic formula from this form. | Project 7.2
Problem 7.2 | | A.REI.4.b Solve quadratic equations by inspection (e.g., for $x2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as a \pm bi for real numbers a and b. | Project 7.1
Project 7.2
Problem 7.1
Problem 7.1
Problem 7.2 | | A.REI.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions. | Project 5.1
Project 5.2
Problem 5.2 | | A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables. | Investigation 5.1
Project 5.2
Problem 5.1
Problem 5.2 | |---|---| | A.REI.7 Solve a simple system consisting of a linear equation and a quadratic equation in two variables algebraically and graphically. For example, find the points of intersections between the line y=-3x and the circle y^2=3. | Problem 6.2 | | A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line). | Project 3.2 Problem 3.2 Investigation 6.1 Project 6.1 Project 6.2 Problem 6.1 | | A.REI.11 Explain why the x-coordinates of the points where the graphs of the equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) = g(x)$; find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where $f(x)$ and/or $g(x)$ are linear, polynomial, rational, absolute value, exponential, and logarithmic functions.* | Investigation 5.1
Project 5.1
Project 5.2
Problem 5.1
Problem 5.2 | | A.REI.12 Graph the solutions to a linear inequality in two variables as a half-
plane (excluding the boundary in the case of a strict inequality), and graph
the solution set to a system of linear inequalities in two variables as the
intersection of the corresponding half-planes. | Project 5.2
Problem 5.2 | #### **Functions** | Functions | | |--|---| | F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$. | Project 3.1
Project 3.2
Problem 3.1
Problem 3.2 | | F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. | Investigation 3.1
Project 3.2
Problem 3.1
Problem 3.2 | | F.IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.* | Project 4.1
Investigation 6.1
Project 6.1
Project 6.2
Problem 6.1
Problem 6.2 | | F.IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.* | Project 3.1 Project 3.2 Problem 3.1 Problem 3.2 Investigation 6.1 Project 6.2 Problem 6.1 Problem 6.2 | | F.IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph.* | Project 4.1
Project 4.2
Problem 4.1 | | F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.* | Project 4.1 Project 4.2 Problem 4.1 Investigation 6.1 Project 6.1 Problem 6.1 Problem 6.2 | |--|---| | F.IF.7.a Graph linear and quadratic functions and show intercepts, maxima, and minima. | Project 4.1 Problem 4.1 Problem 4.2 Investigation 6.1 Project 6.1 Problem 6.1 Problem 6.2 | | F.IF.7.b Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. | Project 4.1
Problem 4.1
Problem 6.2 | | F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. | Project 7.2
Problem 7.2 | | F.IF.8.a Use the process of factoring and completing the square in a quadratic function to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context. | Project 7.1
Project 7.2
Problem 7.2 | | F.BF.1 Write a function that describes a relationship between two quantities.* | Investigation 3.1 Project 3.2 Problem 3.1 Problem 3.2 Investigation 5.1 Project 5.1 Project 5.2 Problem 5.1 Problem 5.2 | |---|---| | F.BF.1.a Determine an explicit expression, a recursive process, or steps for calculation from a context. | Project 8.1
Project 8.3
Problem 8.2 | | F.BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, k $f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them. | Investigation 3.1 Project 3.2 Problem 3.1 Problem 3.2 Problem 4.1 Project 6.1 Project 6.2 | | F.LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions. | Investigation 8.1
Investigation 8.2
Project 8.1
Project 8.3
Problem 8.2 | | F.LE.1.a Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals. | Project 8.1
Project 8.3
Problem 8.2 | | F.LE.1.b Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. | Investigation 8.1
Investigation 8.2
Project 8.1
Project 8.3
Problem 8.2 | |--|---| | F.LE.1.c Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another. | Investigation 8.1
Investigation 8.2
Project 8.1
Project 8.3
Problem 8.1
Problem 8.2 | | F.LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). | Project 3.2 Problem 3.1 Problem 3.2 Investigation 8.1 Investigation 8.2 Project 8.1 Project 8.3 Problem 8.1 Problem 8.2 | | F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. | Project 8.1
Project 8.3
Problem 8.2 | | F.LE.5 Interpret the parameters in a linear or exponential function in terms of a context. | Project 3.2
Problem 3.1
Problem 3.2
Project 8.1 | ## **Statistics and Probability** | Al-S.ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. | Project 8.2 | |---|---| | Al-S.ID.6 Represent bivariate data on a scatter plot, and describe how the variables' values are related. | Investigation 4.1
Project 4.2
Problem 4.2 | | Al-S.ID.6a Fit a function to real-world data; use functions fitted to data to solve problems in the context of the data. | Project 4.2
Problem 4.2 | | S.ID.6.c Fit a linear function for a scatter plot that suggests a linear association. | Project 4.2
Problem 4.2 | | S.ID.7 Interpret the slope (rate of change) and the intercept (constent term) of a linear model in the context of the data. | Project 4.2
Problem 4.2 | | S.ID.8 Compute (using technology and interpret the coorelation coefficient of a linear fit. | Project 4.2
Problem 4.2 | | S.ID.9 Distinguish between correlation and causation | Investigation 4.1 |